THAM 12.3 A DEMODULATION LSI FOR LASER DISCS WITH AC-3 AUDIO

Manabu Honda and Kenji Mito Pioneer Electronic Corporation, Saitama, Japan

Abstract

We have developed a demodulation LSI for Laser Discs with AC-3 audio (digital multi-channel audio with surround). The LSI has functions to demodulate QPSK signals, to detect and correct errors and to output AC-3 data.

1. Introduction

The number of movies with high quality multichannel audio for theater usage is recently increasing, and in order to enjoy the same sound effect at a home, a system of Laser Discs with digital multi-channel audio was developed. And this time, we have developed a LSI for compact and low-price playback system corresponding to these Laser Discs. The outline of the system, some of the features and performances of the LSI are introduced in this paper.

2. Outline of the system

We relate recording format of developed system at first. The system adopts AC-3 audio as a digital multichannel audio with surround. AC-3 is a flexible digital audio compression technology, which supports a surround format formed of six discrete channels (left, center, right, left surround, right surround and subwoofer), each channel except for the subwoofer channel possessing 20kHz bandwidth. In the case of a Laser Disc system, AC-3 data rate is fixed at 384kbps. Being added check bytes, that are generated by doublyencoded Reed-Solomon code, and synchronous words and so on, the recording data rate becomes 576kbps.

They are modulated in Differential-QPSK format with a carrier frequency of 2.88MHz, recorded in place of the analog FM audio R-channel of conventional Laser Disc format. (see Fig.1)

Fig. 1 Recording signal spectrum

3. Functions and features of the LSI

Fig.2 illustrates the playback system. The LSI is a key part of the demodulation block. The demodulation block also needs a band pass filter and a 32kword SRAM (see Fig.3).

The LSI has functions to demodulate QPSK signals, to detect and correct errors and to output AC-3 data. Using the digital signal processing technology contributes to the high performance of the stability and the cheap cost of the LSI.

Features of the LSI are as follows.

- The detection adopts a differential detection method.
- In order to make the circuit simple, the detection block of the LSI treats the modulated signal as one-bit wide data.
- Phase resolution is 4-bit precision, because clock frequency to detect a phase is sixteen times as many as a carrier frequency.
- When 9bit/word memory is used as memory of error correction, ability of correction increases by erasure correction.
- The LSI outputs AC-3 data stream on digital audio interface.

We measured the number of byte errors, when a

Laser Disc with AC-3 audio was played back and signals from the Laser Disc were processed by the LSI on evaluation board. The byte error rate before the error correction is normally $1\sim 2\times 10^{-5}$. In the worst case of time base error that results from wow and flutter of Laser Disc Player, byte error rate is $1\sim 3\times 10^{-4}$. The estimated worst value of time base error is $45\mu s$. We have confirmed that results are little enough to correct errors.

4. Conclusion

We have developed a demodulation LSI for Laser Discs with AC-3 audio. The LSI is useful for constructing compact, easy and economical demodulation block.

Fig. 2 AC-3 playback system

Fig. 3 Demodulation block diagram